619 research outputs found

    Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics

    Full text link
    Seasonally dry tropical ecosystems occur in the Americas, Africa, India and Australia. They sustain large human populations, determine regional climate, are sites of biological and cultural conservation, and have significant economic value. Evergreen, deciduous and semi- and brevideciduous trees frequently co-occur. Recent research reveals how these various phenological groups respond to changes in soil and atmospheric water content. Cost-benefit analyses of evergreen and deciduous species show how leaves of deciduous species live fast and die young, whereas leaves of evergreen species live slowly but for longer

    Coordinating leaf functional traits with branch hydraulic conductivity: Resource substitution and implications for carbon gain

    Full text link
    We studied relationships among branch hydraulic conductivity, xylem embolism, stomatal conductance (gs), foliar nitrogen (N) concentration and specific leaf area (SLA) of seven tree species growing at four temperate woodland sites spanning a 464-1350 mm rainfall gradient. Specifically, we examined the question: are gs and foliar N concentration coordinated with branch hydraulic conductivity and, if so, what are the implications for carbon assimilation? Area-based, light-saturated photosynthetic rate (Aa) was uniquely and positively correlated with gs and foliar N concentration. Multiple regression analyses showed that, when variability in SLA was controlled for, the (positive) partial slope for each predictor remained significant. In contrast, there was a negative correlation between gs and foliar N concentration such that, for any given Aa, leaves with a high gs allocated less N to foliage than leaves with a low gs. Foliar N concentration was negatively correlated with branch hydraulic conductivity, whereas gs was positively correlated with branch hydraulic conductivity. These relationships were also significant when variability in leaf area to sapwood area ratio, gs and SLA were controlled for in a multiple regression, suggesting that the relationships were unique and independent of other confounding factors. Trees with low water transport capacity were able to support a high Aa by increasing investment in foliar N. Resource substitution occurred such that there was a trade-off between gs and foliar N in relation to branch hydraulic conductivity. High Aa could be sustained through either a high branch hydraulic conductivity and hence high gs and a low allocation to foliar N, or the effect of a low branch hydraulic conductivity and hence low gs could be offset by a high allocation to foliar N. The results are discussed in relation to mechanisms for minimizing the negative effects of limited water availability on carbon gain. © 2008 Heron Publishing

    Co-ordination of leaf area, sapwood area and canopy conductance leads to species convergence of tree water use in a remnant evergreen woodland.

    Full text link
    This paper compares rates of tree water use, Huber value, canopy conductance and canopy decoupling of two disparate, co-occurring tree species, in a stand of remnant native vegetation in temperate Australia in order to compare their relative behaviour seasonally and during and after a drought. The study site was an open woodland dominated by Eucalyptus crebra F.Muell. (a broad-leaved species) and Callitris glaucophylla J.Thompson & L.A.S. Johnson (a needle-leaved tree species). Tree water use was measured with sapflow sensors and leaf area and sapwood area were measured destructively on felled trees. The Huber value was calculated as the ratio of sapwood area to leaf area. Diameter at breast height (DBH) of the stem was used as a measure of tree size. Canopy conductance was calculated with an inversion of the PenmanMonteith equation, whereas canopy decoupling) was calculated as described by Lu et al. (2003). The relationship between DBH and daily total water use varied during the four measurement periods, with largest rates of water use observed in summer 20032004, following a large rainfall event and the smallest maximum water use observed in winter 2003 when monthly rainfall was much less than the long-term mean for those months. Despite differences in the relationship between sapwood area and DBH for the two species, the relationship between daily total water use and DBH did not differ between species at any time. The same rates of water use for the two species across sampling periods arose through different mechanisms; the eucalypt underwent significant changes in leaf area whereas the Callitris displayed large changes in canopy conductance, such that tree water use remained the same for both species during the 2-year period

    Tree growth rates in north Australian savanna habitats: Seasonal patterns and correlations with leaf attributes

    Full text link
    We demonstrate a significant relationship between leaf attributes and growth rates of mature trees under natural conditions in northern Australia, a pattern that has not been widely reported before in the literature. Increase in diameter at breast height (DBH) was measured every 3 months for 2 years for 21 tree species from four habitats near Darwin: Eucalyptus open forest, mixed woodland, Melaleuca swamp and dry monsoon rainforest. Assimilation rates and foliar chlorophyll, nitrogen and phosphorus concentrations were positively correlated with growth rate and negatively correlated with leaf mass per area. For most species, increases in DBH were confined to the wet-season (summer) period between November and May. Average annual increases in DBH were larger in the dry monsoon rainforest (0.87 cm) and the Melaleuca swamp (0.65 cm) than in the woodland (0.20 cm) and the open forest (0.16 cm), and were larger in non-Myrtaceous species (0.53 cm) than in Myrtaceous species (0.25 cm). These results are discussed in relation to the frequent fire regime prevailing over much of northern Australia which causes the marked contrast between the small pockets of fire-tender closed monsoon rainforest and the surrounding large expanses of fire-tolerant savanna

    Carbon balance of a tropical savanna of northern Australia

    Full text link
    Through estimations of above- and below-ground standing biomass, annual biomass increment, fine root production and turnover, litterfall, canopy respiration and total soil CO2 efflux, a carbon balance on seasonal and yearly time-scales is developed for a Eucalypt open-forest savanna in northern Australia. This carbon balance is compared to estimates of carbon fluxes derived from eddy covariance measurements conducted at the same site. The total carbon (C) stock of the savanna was 204±53 ton C ha -1, with approximately 84% below-ground and 16% above-ground. Soil organic carbon content (0-1 m) was 151±33 ton C ha-1, accounting for about 74% of the total carbon content in the ecosystem. Vegetation biomass was 53±20 ton C ha-1, 39% of which was found in the root component and 61% in above-ground components (trees, shrubs, grasses). Annual gross primary production was 20.8 ton C ha-1, of which 27% occurred in above-ground components and 73% below-ground components. Net primary production was 11 ton C ha-1 year-1, of which 8.0 ton C ha-1 (73%) was contributed by below-ground net primary production and 3.0 ton C ha-1 (27%) by above-ground net primary production. Annual soil carbon efflux was 14.3 ton C ha-1 year -1. Approximately three-quarters of the carbon flux (above-ground, below-ground and total ecosystem) occur during the 5-6 months of the wet season. This savanna site is a carbon sink during the wet season, but becomes a weak source during the dry season. Annual net ecosystem production was 3.8 ton C ha-1 year-1

    Daily and seasonal patterns of carbon and water fluxes above a north Australian savanna

    Full text link
    Daily and seasonal fluxes of carbon dioxide and water vapor above a north Australian savanna were recorded over a complete dry season-wet season annual cycle using the eddy covariance technique. Wet season rates of photosynthesis and transpiration were larger than those measured in the dry season and were dominated by the presence of the grassy understory. As the dry season progressed and the grass understory died, ecosystem rates of assimilation and water vapor flux declined substantially. By the end of the dry season, canopy assimilation and evapotranspiration rates were 20-25% of wet season values. Assimilation was light saturated in the dry season but not in the wet season. Stomatal control of transpiration increased between the wet and dry season. This was revealed by the decline in the slope of E with increasing leaf-to-air vapor pressure difference (D) between wet and dry seasons, and also by the significant decrease in the ratio of boundary to canopy conductance observed between the wet and dry seasons. A simple pan-tropical modeling of leaf area index or wet season canopy CO2 flux was undertaken. It was shown that with readily available data for foliar N content and the ratio of rainfall to potential evaporation, leaf index and wet season canopy CO2 flux can be successfully estimated for a number of tropical ecosystems, including north Australian savannas

    Monsoonal influences on evapotranspiration of savanna vegetation of northern Australia

    Full text link
    Data from savannas of northern Australia are presented for net radiation, latent and sensible heat, ecosystem surface conductance (Gs) and stand water use for sites covering a latitudinal range of 5° or 700 km. Measurements were made at three locations of increasing distance from the northern coastline and represent high- (1,750 mm), medium- (890 mm) and low- (520 mm) rainfall sites. This rainfall gradient arises from the weakened monsoonal influence with distance inland. Data were coupled to seasonal estimates of leaf area index (LAI) for the tree and understorey strata. All parameters were measured at the seasonal extremes of late wet and dry seasons. During the wet season, daily rates of evapotranspiration were 3.1-3.6 mm day-1 and were similar for all sites along the rainfall gradient and did not reflect site differences in annual rainfall. During the dry season, site differences were very apparent with evapotranspiration 2-18 times lower than wet season rates, the seasonal differences increasing with distance from coast and reduced annual rainfall. Due to low overstorey LAI, more than 80% of water vapour flux was attributed to the understorey. Seasonal differences in evapotranspiration were mostly due to reductions in understorey leaf area during the dry season. Water use of individual trees did not differ between the wet and dry seasons at any of the sites and stand water use was a simple function of tree density. Gs declined markedly during the dry season at all sites, and we conclude that the savanna water (and carbon) balance is largely determined by Gs and its response to atmospheric and soil water content and by seasonal adjustments to canopy leaf area

    Influence of season, drought and xylem ABA on stomatal responses to leaf-to-air vapour pressure difference of trees of the Australian wet-dry tropics

    Full text link
    This paper reports the results of two experiments undertaken to investigate the influence of season and soil drying on stomatal responses to leaf-to-air vapour pressure differences. We examined the response of stomatal conductance to increasing leaf-to-air vapour pressure difference, in the wet and dry seasons, of five tropical tree species. We also examined leaves of these species for anatomical differences to determine whether this could explain differences in stomatal sensitivity to leaf-to-air vapour pressure differences. Finally, we conducted a split-root experiment with one of those species to look for interactions between xylem abscisic acid concentration, predawn water potential, leaf area to root mass ratio and stomatal responses to leaf-to-air vapour pressure differences. Stomatal conductance declined linearly with increasing leaf-to-air vapour pressure difference in all species. Leaves that expanded in the 'dry' season were more sensitive to leaf-to-air vapour pressure differences than those that had expanded in the 'wet' season. The value of leaf-to-air vapour pressure difference where 50% of extrapolated maximum stomatal conductance would occur was 5.5 kPa for wet season but only 3.4 kPa for dry season leaves. In the wet season, transpiration rate increased with increasing leaf-to-air vapour pressure difference in most example species. However, in the dry season, transpiration was constant as leaf-to-air vapour pressure differences increased in most cases. There were significant changes in the proportion of cell wall exposed to air space in leaves, between wet and dry seasons, in three of four species examined. In the split-root experiment, a very mild water stress increased stomatal sensitivity to leaf-to-air vapour pressure differences, and stomatal conductivity declined linearly with decreasing predawn water potential. However, levels of ABA in the xylem did not change, and stomatal sensitivity to exogenous ABA did not change. The ratio of leaf area to root mass declined during water stress and was correlated to changes in stomatal sensitivity to leaf-to-air vapour pressure differences
    corecore